[Source: Mr. Lovenstein Comics | Like Mr. Lovenstein on Facebook | Follow “Mr. Lovenstein” on X/Twitter]
Your car might be watching you to keep you safe − at the expense of your privacy
M. Hadi Amini, Florida International University
Depending on which late-model vehicle you own, your car might be watching you – literally and figuratively – as you drive down the road. It’s watching you with cameras that monitor the cabin and track where you’re looking, and with sensors that track your speed, lane position and rate of acceleration.
Your car uses this data to make your ride safe, comfortable and convenient. For example, the cameras can tell when you’ve been distracted and need to bring your attention back to the road. They can also identify when you are speeding by verifying the speed limit from your GPS position or traffic signs along the road and warn you to slow down. Some carmakers are also beginning to incorporate similar features for convenience, such as unlocking your car by scanning your face or fingerprint. Your car may also transmit some of this data to the manufacturer’s data centers, where the company uses it to improve your driving experience or provide you with personalized services.
In addition to providing these benefits, this data collection is a potential privacy nightmare. The information can reveal your identity, your habits when you’re in your car, how safely you drive, where you’ve been and where you regularly go. A report by the Mozilla Foundation, a nonprofit technology research and advocacy organization, found that carmakers’ privacy policies are exceedingly lax. The study identified cars as the “worst category of products for privacy that we have ever reviewed.” U.S. Sen. Ed Markey wrote a letter to U.S. automakers on Nov. 30, 2023, asking a lengthy set of questions about their data practices.
Today’s smart cars present drivers with a trade-off between convenience and privacy, assuming drivers have the option of improving the data privacy of their cars. As a computer scientist who studies cybersecurity and resilience in transportation, I see several technological routes to getting the best of both worlds: cars that make use of this collected data while also preserving users’ privacy.
Driver data
Today’s cars use a wide range of sensors to understand the environment, analyze the data and ensure the safety of passengers. For instance, cars are equipped with sensors that measure brake pedal position, vehicle speed, driver’s movements, surrounding vehicles and even traffic lights. The collected data is transmitted to the car’s electric control units, the computers that operate the car’s many systems.
There are two types of sensors that continuously monitor and predict a driver’s drowsiness. The first is vehicle status monitoring sensors such as lane detection and steering wheel position tracking. This data is not directly related to a specific person and can be considered not personally identifiable information unless it is correlated with other data that identifies the driver.
The second type of sensors tracks drivers themselves. This category includes things like cameras to track the driver’s eye movements to predict fatigue. This second group of sensors is directly related to the driver’s privacy because they collect personally identifiable information, such as the driver’s face.
Protecting privacy
There is a trade-off between the quality of the driving experience and the privacy of drivers, depending on the level of services and features. Some drivers may prefer to share their biometric data to facilitate accessing a car’s functions and automating a major part of their driving experience. Others may prefer to manually control the car’s systems, sharing less personally identifiable information or none at all.
At first glance, it seems the trade-off of privacy and driver comfort cannot be avoided. Car manufacturers tend to take measures to protect drivers’ data against data thieves, but they collect a lot of data themselves. And as the Mozilla Foundation report showed, most car companies reserve the right to sell your data. Researchers are working on developing data analytics tools that better protect privacy and make progress on eliminating the trade-off.
For instance, over the past seven years, the concept of federated machine learning has attracted attention because it allows algorithms to learn from the data on your local device without copying the data to a central server. For instance, Google’s Gboard keyboard benefits from federated learning to better guess the next word you are likely to type without sharing your private data with a server.
Research led by Ervin Moore, a Ph.D. student at Florida International University’s Sustainability, Optimization, and Learning for InterDependent Networks laboratory, and published in IEEE Internet of Things Journal explored the idea of using blockchain-based federated machine learning to improve the privacy and security of users and their sensitive data. The technique could be used to protect drivers’ data. There are other techniques to preserve privacy as well, such as location obfuscation, which alters the user’s location data to prevent their location from being revealed.
While there is still a trade-off between user privacy and quality of service, privacy-preserving data analytics techniques could pave the way for using data without leaking drivers’ and passengers’ personally identifiable information. This way, drivers could benefit from a wide range of modern cars’ services and features without paying the high cost of lost privacy.
M. Hadi Amini, Assistant Professor of Computing and Information Sciences, Florida International University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Together We’ll Be UNSTOPPABLE! [Star Wars Comedy Sketch]
Emperor Palpatine brings a potential new apprentice to his throne room, but the young man questions the nature of the emperor. A comedy sketch by Joel Haver.
Today’s Hottest Deals: Krampus: The Naughty Cut (4K Collector’s Edition), ASUS ROG Strix 49” Curved Gaming Monitor, Starfield (Xbox Series X), Anker Power Stations, and MORE!
For today’s edition of “Deal of the Day,” here are some of the best deals we stumbled on while browsing the web this morning! Please note that Geeks are Sexy might get a small commission from qualifying purchases done through our posts (As an Amazon associate or a member of other affiliate programs. As an Amazon Associate, I earn from qualifying purchases.)
–Krampus: The Naughty Cut (Collector’s Edition) [4K UHD] – $39.98 $20.49
–Save BIG on Anker Portable Power Stations and Solar Panels
–ASUS ROG Strix 49” Ultra-wide Curved HDR Gaming Monitor (XG49WCR) – $999.99 $799.99
–ROCCAT Vulcan Pro Linear Optical PC Gaming Keyboard – $159.99 $49.99
–Starfield: Standard Edition – Xbox Series X – $69.99 $49.99
–WD 18TB Elements Desktop External Hard Drive – $529.99 $279.99
–Sony WH-1000XM4 Wireless Premium Noise Canceling Overhead Headphones with Mic – $348.00 $228.00
–Microsoft Office Professional Plus 2019 for Windows: One-Time Purchase – $229.00 $29.97
–LifeStraw Personal Water Filter – $19.95 $9.88
Modern Cave Art [Comic]
Barbie Girl Performed by Toothbrushes, Printers, A Shaver, and a Steam Iron [Video]
Aqua’s Barbie Girl played by electric devices with a toothbrush as Barbie and a shaver as Ken. The percussion is handled by a steam iron and two typewriters. The bass is played by another electric toothbrush and three credit card machines complement the harmonies.
The Only Real God [Comic]
[Source: @martin_rosner]
Happy Krampusnacht! [Comic]
Yes, Krampusnacht is a thing, and yep, it’s today!
[Source: @skullpizza]
True Facts: The Science of Real-Life Superpowers
The science or real-life superpowers in animals and insects by the always amusing Ze Frank. Enjoy!
[Ze Frank]
Earth’s magnetic field protects life on Earth from radiation, but it can move, and the magnetic poles can even flip
The Earth’s magnetic field plays a big role in protecting people from hazardous radiation and geomagnetic activity that could affect satellite communication and the operation of power grids. And it moves.
Scientists have studied and tracked the motion of the magnetic poles for centuries. The historical movement of these poles indicates a change in the global geometry of the Earth’s magnetic field. It may even indicate the beginning of a field reversal – a “flip” between the north and south magnetic poles.
I’m a physicist who studies the interaction between the planets and space. While the north magnetic pole moving a little bit isn’t a big deal, a reversal could have a big impact on Earth’s climate and our modern technology. But these reversals don’t happen instantaneously. Instead, they occur over thousands of years.
Magnetic field generation
So how are magnetic fields like the one around Earth generated?
Magnetic fields are generated by moving electric charges. A material that enables charges to easily move in it is called a conductor. Metal is one example of a conductor – people use it to transfer electric currents from one place to the other. The electric current itself is simply negative charges called electrons moving through the metal. This current generates a magnetic field.
Layers of conducting material can be found in the Earth’s liquid iron core. Currents of charges move throughout the core, and the liquid iron is also moving and circulating in the core. These movements generate the magnetic field.
Earth isn’t the only planet with a magnetic field – gas giant planets like Jupiter have a conducting metallic hydrogen layer that generates their magnetic fields.
The movement of these conducting layers inside planets results in two types of fields. Larger motions, such as large-scale rotations with the planet, lead to a symmetric magnetic field with a north and a south pole – similar to a toy magnet.
These conducting layers may have some local irregular motions due to local turbulence or smaller flows that do not follow the large-scale pattern. These irregularities will manifest in some small anomalies in the planet’s magnetic field or places where the field deviates from being a perfect dipole field.
These small-scale deviations in the magnetic field can actually lead to changes in the large-scale field over time and potentially even a complete reversal of the polarity of the dipole field, where the north becomes south and vice versa. The designations of “north” and “south” on the magnetic field refer to their opposite polarities – they’re not related to geographic north and south.
The Earth’s magnetosphere, a protective bubble
The Earth’s magnetic field creates a magnetic “bubble” called the magnetosphere above the uppermost part of the atmosphere, the ionosphere layer.
The magnetosphere plays a major role in protecting people. It shields and deflects damaging, high-energy, cosmic-ray radiation, which is created in star explosions and moves constantly through the universe. The magnetosphere also interacts with solar wind, which is a flow of magnetized gas sent out from the Sun.
The magnetosphere and ionosphere’s interaction with magnetized solar wind creates what scientists call space weather. Usually, the solar wind is mild and there’s little to no space weather.
However, there are times when the Sun sheds large magnetized clouds of gas called coronal mass ejections into space. If these coronal mass ejections make it to Earth, their interaction with the magnetosphere can generate geomagnetic storms. Geomagnetic storms can create auroras, which happen when a stream of energized particles hits the atmosphere and lights up.
During space weather events, there’s more hazardous radiation near the Earth. This radiation can potentially harm satellites and astronauts. Space weather can also damage large conducting systems, such as major pipelines and power grids, by overloading currents in these systems.
Space weather events can also disrupt satellite communication and GPS operation, which many people rely on.
Field flips
Scientists map and track the overall shape and orientation of the Earth’s magnetic field using local measurements of the field’s orientation and magnitude and, more recently, models.
The location of the north magnetic pole has moved by about 600 miles (965 kilometers) since the first measurement was taken in 1831. The migration speed has increased from 10 miles per year to 34 miles per year (16 km to 54 km) in more recent years. This acceleration could indicate the beginning of a field reversal, but scientists really can’t tell with less than 200 years of data.
The Earth’s magnetic field reverses on time scales that vary between 100,000 to 1,000,000 years. Scientists can tell how often the magnetic field reverses by looking at volcanic rocks in the ocean.
These rocks capture the orientation and strength of the Earth’s magnetic field when they are created, so dating these rocks provides a good picture of how the Earth’s field has evolved over time.
Field reversals happen fast from a geologic standpoint, though slow from a human perspective. A reversal usually takes a few thousand years, but during this time the magnetosphere’s orientation may shift and expose more of the Earth to cosmic radiation. These events may change the concentration of ozone in the atmosphere.
Scientists can’t tell with confidence when the next field reversal will happen, but we can keep mapping and tracking the movement of Earth’s magnetic north.
Ofer Cohen, Associate Professor of Physics and Applied Physics, UMass Lowell
This article is republished from The Conversation under a Creative Commons license. Read the original article.